A-17

NOVEL ROUTES TO THE SYNTHESIS OF METAL FLUORIDES

Rudolf Hoppe

Institut für Anorganische Chemie I der Justus Liebig-Universität Giessen, Heinrich-Buff-Ring 58, 6300 Giessen (F.R.G.)

To avoid the growing of single crystals of a metal fluorides from its own melt we used 3 different routes:

- 1) T1F can be used as a flux. (e.g. ${\rm a-Ba_3In_2F_{12}},\ {\rm Sr_2InF_7},\ {\rm T1ZrF_5}\ {\rm and}\ {\rm Ba_5Mn_3F_{19}},\ {\rm this}\ {\rm isotypic}\ {\rm with\ new}$ ${\rm Ba_5Ga_3F_{19}}.$
- 2) By thermal decomposition of fluorides of high oxidation state under proper conditions we obtained red-liliac single crystals of A_3 MnF $_6$ (A = K, Rb, Cs; HT-forms), transparent dark brownishred crystals of A MnF $_4$ A = Li-Cs), and M^{II} MnF $_5$ (M^{II} = Ca, Sr, Cd) as winered clear transparent specimens.
- 3) Using the otherwise feared 'reaction with the wall' it is possible to grow single crystals of yellow KNiF_3 and RbNiF_3 starting with $\mathrm{K_2NiF}_6$ or RbNiF_6 . These and similar reactions like NaTlF_4 + NaTl or NaTlF_4 + Cu yeald single crystals at surprisingly low temperatures (e.g. $\mathrm{Tl}_2\mathrm{CuF}_4$: colourless, 500°C, 10d).

The result are demonstrated in detail with an additional remark on the results of exchange reactions.